Magnetic Nanoparticle Sensors

نویسندگان

  • Isaac Koh
  • Lee Josephson
چکیده

Many types of biosensors employ magnetic nanoparticles (diameter = 5-300 nm) or magnetic particles (diameter = 300-5,000 nm) which have been surface functionalized to recognize specific molecular targets. Here we cover three types of biosensors that employ different biosensing principles, magnetic materials, and instrumentation. The first type consists of magnetic relaxation switch assay-sensors, which are based on the effects magnetic particles exert on water proton relaxation rates. The second type consists of magnetic particle relaxation sensors, which determine the relaxation of the magnetic moment within the magnetic particle. The third type is magnetoresistive sensors, which detect the presence of magnetic particles on the surface of electronic devices that are sensitive to changes in magnetic fields on their surface. Recent improvements in the design of magnetic nanoparticles (and magnetic particles), together with improvements in instrumentation, suggest that magnetic material-based biosensors may become widely used in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrasensitive Magnetic Nanoparticle Detector for Biosensor Applications

Ta/Ru/Co/Ru/Co/Cu/Co/Ni80Fe20/Ta spin-valve giant magnetoresistive (GMR) multilayers were deposited using UHV magnetron sputtering and optimized to achieve a 13% GMR ratio before patterning. The GMR multilayer was patterned into 12 sensor arrays using a combination of e-beam and optical lithographies. Arrays were constructed with 400 nm × 400 nm and 400 nm × 200 nm sensors for the detection of ...

متن کامل

Modeling of Nanoparticular Magnetoresistive Systems and the Impact on Molecular Recognition

The formation of magnetic bead or nanoparticle superstructures due to magnetic dipole dipole interactions can be used as configurable matter in order to realize low-cost magnetoresistive sensors with very high GMR-effect amplitudes. Experimentally, this can be realized by immersing magnetic beads or nanoparticles in conductive liquid gels and rearranging them by applying suitable external magne...

متن کامل

A Solid State Nanopore Device for Investigating the Magnetic Properties of Magnetic Nanoparticles

In this study, we explored magnetic nanoparticles translocating through a nanopore in the presence of an inhomogeneous magnetic field. By detecting the ionic current blockade signals with a silicon nitride nanopore, we found that the translocation velocity that is driven by magnetic and hydrodynamic forces on a single magnetic nanoparticle can be accurately determined and is linearly proportion...

متن کامل

Recent Advances in Nanoparticle Concentration and Their Application in Viral Detection Using Integrated Sensors

Early disease diagnostics require rapid, sensitive, and selective detection methods for target analytes. Specifically, early viral detection in a point-of-care setting is critical in preventing epidemics and the spread of disease. However, conventional methods such as enzyme-linked immunosorbent assays or cell cultures are cumbersome and difficult for field use due to the requirements of extens...

متن کامل

Scaling of transverse nuclear magnetic relaxation due to magnetic nanoparticle aggregation.

The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T2CP of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This effect is commonly used to measure the concentrations of a variety of small molecules. We perform extensive Monte Carlo simulations of water diffusi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009